Technique for Quantitative Mapping of Three-Dimensional Liquid-Gas Phase Boundareis in Microchannel Flows
نویسندگان
چکیده
A diagnostic technique capable of characterizing interfaces between transparent, immiscible fluids is developed and demonstrated by investigating the morphology of liquid-gas interfaces in an adiabatic two-phase flow through a microchannel of 500 μm × 500 μm square cross section. Water seeded with 0.5 μm-diameter fluorescent polystyrene particles is pumped through the channel, and the desired adiabatic two-phase flow regime is achieved through controlled air injection. The diagnostic technique relies on obtaining particle position data through epifluorescent imaging of the flow at excitation and emission wavelengths of 532 nm and 620 nm, respectively. The particle position data are then used to resolve interface locations to within ±1 μm in the focal plane. By mapping the interface within individual focal planes at various depths within the channel, it is possible to determine the complete liquid-gas interface geometry across the channel cross section in a dynamic flow environment. Utilizing this approach, the liquid-gas phase boundaries of annular flows within a microchannel have been successfully characterized.
منابع مشابه
Technique for quantitative mapping of three-dimensional liquid-gas phase boundaries in microchannel flows
A diagnostic technique capable of characterizing interfaces between transparent, immiscible fluids is developed and demonstrated by investigating the morphology of liquid–gas interfaces in an adiabatic two-phase flow through a microchannel of 500 lm 500 lm square cross section. Water seeded with 0.5 lm-diameter fluorescent polystyrene particles is pumped through the channel, and the desired adi...
متن کاملNumerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter
Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...
متن کاملThree-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...
متن کاملSubcooled two-phase flow boiling in a microchannel heat sink: comparison of conventional numerical models
Subcooled flow boiling in multi-microchannels can be used as an efficient thermal management approach in compact electrical devices. Highly subcooled flow boiling of HFE 7100 is studied in two microchannel heat sinks to choose a proper numerical model for simulating boiling flows in microchannels. Results of five different numerical models, including Volume of Fluid (VOF), Eulerian boiling, Eul...
متن کاملNumerical investigating the gas slip flow in the microchannel heat sink using different materials
In this work, slip flow of helium gas has been studied in a three dimensional rectangular microchannel heat sink with 11 microchannel and 10 rectangular fins. Helium gas flow is considered ideal and incompressible. The finite volume method with using coupled algorithm is employed to carry out the computation. To validate the present work, comparison with numerical and experimental studies is do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014